

CHP in the Ethanol Industry: The Business Case

April 1st, 2004

Bruce Hedman

Energy and Environmental Analysis, Inc bhedman @eea-inc.com

Overview

- Why CHP for Ethanol
- What are the viable CHP options
- What are the critical cost and performance parameters
- Illustrative economics
- Critical factors

Why CHP Is a Good Fit for Ethanol

- Energy is the second largest cost of production for dry mill ethanol plants
- Electric and steam demands are large and coincident
- Electric and steam profiles are relatively flat
- Operating hours are continuous 24/7

Ethanol Energy Demand

Plant Capacities, mmgal/yr	15 - 50
Electricity Demand, kWh/gal	0.9 - 2.0
Steam Demand, lbs/gal	19 - 22
Boiler Fuel, Btu/gal	24,000 – 27,500
DDGS Drier Fuel, Btu/gal	13,000
Power to Steam Ratio	0.16 – 0.32

Gas Turbine CHP

Gas Turbine/Supplemental Firing CHP

Boiler/Steam Turbine CHP

CHP System Cost and Performance

Pel 1			21111
	Gas Turbine	Gas Turbine w/Duct Firing	Boiler/Steam Turbine
Capacity, MW	1 - 15	1 - 15	0.5 - 5
Electrical Efficiency, % (HHV)	22 – 32	12 - 17	6 - 10
Steam Output, Btu/kWh	4,500 - 6,700	12,000 – 20,000	35,000 - 40,000
Overall Efficiency, % (HHV)	65 - 70	80 - 85	75 - 85
Power to Steam Ratio	0.4 – 0.6	0.17 – 0.27	0.08 - 0.12
Installed Costs, \$/kW	1,800 - 900	2,000 - 1,000	350 – 900*
Non-fuel O&M Costs, \$/kWh	0.006 - 0.01	0.006 - 0.01	<0.004

^{*} Incremental costs of steam turbine generator and supporting systems only

The Value Equation

- Reduced purchased electricity costs
- + Increased fuel costs
- + Increased O&M costs
- + Increased capital expenditure
- Displaced capital?
- Reliability, other operational savings?
- Overall Savings

Simple Payback Analysis

- Payback = Capital Cost/Operating Savings
- Generic, first cut analysis
- Parametric calculation of payback as a function of fuel and electricity prices.
- Useful to identify sites for more complete assessment.

Simple Payback Analysis

- Assume new construction or expansion of existing facility
- Compare operating costs of CHP system with conventional plant design
- Natural gas CHP compared to conventional natural gas boilers/purchased electricity
- Coal CHP compared to coal boiler/purchased electricity

Plant Operating Assumptions

Plant Capacity, mmgal/yr	50
Operating Hours	8760
Electric Use, kWh/gal	0.96
Annual Electric Use, MWh	48,180
Baseload Electric Demand, MW	5.5
Steam Use, lb/gal	19.3
Steam Use, lbs/hr	110,000
Annual Steam Use, mmlbs	963,600
Boiler Fuel Use, Btu/lb	24,125
Annual Boiler Fuel Use, mmBtu	1,206,300
Annual Drier Fuel Use, mmBtu	605,000
Electric Costs, \$/kWh	0.07
Gas Costs, \$/mmBtu	6.00

Gas Turbine CHP System Assumptions

	Gas Turbine	Gas Turbine w/Duct Firing
Capacity, MW	5.2	5.2
Run Hours	8500	8500
Gas Turbine Fuel, mmBtu/hr	67.2	67.2
Duct Burner Fuel, mmBtu/hr	0	49.8
Steam Output, lb/hr	28,600	76,600
Power to Steam Ratio	0.62	0.23
O&M Costs, \$/kWh	0.008	0.008
Capital Costs		
Turbine Genset, \$/kW	415	415
HRSG, \$/kW	100	200
Interconnect, \$/kW	60	60
Misc Equipment, \$kW	80	80
Engineering, installation, etc, \$/kW	<u>390</u>	<u>450</u>
Total Installed Cost, \$/kW	1,045	1,205

Gas Turbine CHP – Energy Results

	W/O CHP	W/ CHP
Purchased Electricity, MWh	48,180	3,980
Generated Electricity, MWh	0	44,200
Boiler Steam, mmlbs	963.3	723.1
Boiler Fuel, mmBtu	1,204,500	903,893
CHP Steam, mmlbs	0	240.5
CHP Fuel, mmBtu	0	557,460
Total Fuel, mmBtu	1,204,500	1,461,353

Gas Turbine CHP – Financial Results

	W/O CHP	W/ CHP
Purchased Electricity, 1000 \$	3,372.6	278.6
Boiler Fuel, 1000 \$	7,227.0	5,423.4
CHP Fuel, 1000 \$	0	3,344.8
Energy Costs*, 1000 \$	10,599.6	9,046.8
O&M Costs, 1000 \$	0	353.6
Standby Charges, 1000 \$ (\$3/kW)	0	187.2
Total Operating Costs, 1000 \$	10,599.6	9,587.5

^{*} Does not include DDGS drier fuel

Operating Savings = \$1,012,100

Gas Turbine CHP – Payback

Capital Costs = \$5,434,000

Payback = 5.4 yrs

Capital Costs = \$4,980,000

Payback = 4.9 yrs

Sensitivity to Electricity and Natural Gas Prices - Gas Turbine CHP

Gas Turbine CHP w/Duct Burner – Energy Results

	W/O CHP	W/ CHP
Purchased Electricity, MWh	48,180	3,980
Generated Electricity, MWh	0	44,200
Boiler Steam, mmlbs	963.3	318.3
Boiler Fuel, mmBtu	1,204,500	397,866
CHP Steam, mmlbs	0	645.3
CHP Fuel, mmBtu	0	986,275
Total Fuel, mmBtu	1,204,500	1,384,141

Gas Turbine CHP w/Duct Burner – Financial Results

	W/O CHP	W/ CHP
Purchased Electricity, 1000 \$	3,372.6	278.6
Boiler Fuel, 1000 \$	7,227.0	2,387.2
CHP Fuel, 1000 \$	0	5,917.7
Energy Costs*, 1000 \$	10,599.6	8,583.5
O&M Costs, 1000 \$	0	353.6
Standby Charges, 1000 \$ (\$3/kW)	0	187.2
Total Operating Costs, 1000 \$	10,599.6	9,124.2

^{*} Does not include DDGS drier fuel

Operating Savings = \$1,475,400

Gas Turbine CHP w/Duct Burner – Payback

Capital Costs = \$6,266,000

Payback = 4.2 yrs

Capital Costs = \$5,366,000

Payback = 3.6 yrs

CHP System \$6,266,000
- Boiler credit \$ 900,000 \$5,366,000

Sensitivity to Electricity and Natural Gas Prices - Gas Turbine CHP w/Duct Firing

Boiler/Steam Turbine CHP System Assumptions

	Gas Turbine
	Cas Turbine
Capacity, MW	3.0
Run Hours	8760
Boiler Fuel, mmBtu/hr	151.3
Steam Output, lb/hr	110,000
Overall Efficiency, % (HHV)	79
Power to Steam Ratio	0.08
O&M Costs, \$/kWh	0.004
Incremental Capital Costs	
Steam Turbine Genset, \$/kW	400
Incremental Boiler Costs, \$/kW	<u>325</u>
Total Incremental Cost, \$/kW	725
Coal Price, \$/mmBtu	1.50

Coal Boiler/Steam Turbine CHP – Energy Results

	W/O CHP	W/ CHP
Purchased Electricity, MWh	48,180	22,680
Generated Electricity, MWh	0	25,500
Boiler Steam, mmlbs	963.3	963.3
Boiler Fuel, mmBtu	1,204,500	1,325,000

Coal Boiler/Steam Turbine CHP– Financial Results

	W/O CHP	W/ CHP
Purchased Electricity, 1000 \$	3,372.6	1,587.6
Boiler Fuel, 1000 \$	1,806.8	1,989.6
Energy Costs*, 1000 \$	5,179.4	3,577.2
O&M Costs, 1000 \$	0	102.0
Standby Charges, 1000 \$ (\$3/kW)	0	108.0
Total Operating Costs, 1000 \$	5,179.4	3,787.2

^{*} Does not include DDGS drier fuel

Operating Savings = \$1,392,200

Coal Boiler/Steam Turbine CHP-Payback

Incremental Capital Costs = \$2,175,000

Steam Turbine

\$1,200,000

Incremental Boiler \$ 975,000

Payback = 1.6 yrs

Sensitivity to Electricity and Coal Prices - Boiler/Steam Turbine CHP

Critical Issues Affecting CHP Economics

- Reasonable projections of fuel and retail electricity prices are key
- Understanding and accounting for specific electric rate structures is critical
 - Demand rate
 - Standby tariffs
- Site requirements will impact capital costs
 - Space and access
 - Permitting
 - Interconnection

Critical Issues Affecting CHP Economics (continued)

- In general, CHP system should be sized to supply within-the-fence energy needs
 - Difficult to sell excess power
 - However, explore opportunities to partner with utility
- Increased thermal utilization improves economics
 - Increasing thermal output displaces less efficient boiler output
- Consider the entire range of potential savings
 - Credits for displaced boiler capacity
 - Are there operating savings from increased reliability?

Thermal Oxidizer/Steam Turbine CHP

Gas Turbine/VOC Destruction CHP

